The following tuning has all 12 fifths within the limits of circulation, with 9 at 697.0 cents and 3 at 709.0 cents, but has a range of major third sizes wider than that found in a usual well-temperament. Here, specifically, the large major thirds at 412 cents (Eb-G, $\mathrm{Gb}-\mathrm{Bb}$) and 424 cents ($\mathrm{Db}-\mathrm{F}, \mathrm{Ab}-\mathrm{C}$) are too wide in usual harmonic timbres to support stable major triads, although they may be used either as meantone diminished fourths (e.g. C\#-F, G\#-C, F\#-Bb, D\#-G) or as active and unstable major thirds in a neomedieval fashion, both uses associated with modality in one form or another rather than major/minor tonality.

The six usual notes for final cadences in the 16 th-century modal system (C, $D, E, F, G, A)$ all have major thirds at 388 cents, or about 1.7 cents wide of a pure $5 / 4$. Both B and Bb have major thirds at 400 cents, not ideal but tolerable to organist Arnolt Schlick in 1512. Thus "acceptably" concordant major thirds are available on notes from Bb to B , an arrangement somewhat analogous to a regular meantone tuning of $\mathrm{Bb}-\mathrm{D} \#$-- where, however, we have eight near-pure major thirds (including also Bb-D and B-D\#, here at 400 cents), as well as a wolf fifth at D\#-Bb.

$0:$	$1 / 1$	0.000	unison, perfect prime
1:	79.000 cents	79.000	
$2:$	194.000 cents	194.000	
$3:$	285.000 cents	285.000	
$4:$	388.000 cents	388.000	
$5:$	503.000 cents	503.000	
$6:$	582.000 cents	582.000	
$7:$	697.000 cents	697.000	
$8:$	776.000 cents	776.000	
$9:$	891.000	cents	891.000
$10:$	994.000	cents	994.000
$11:$	1085.000 cents	1085.000	
$12:$	$2 / 1$		1200.000

$1 / 1: 79.0 \quad 194.0 \quad 285.0 \quad 388.0 \quad 503.0 \quad 582.0 \quad 697.0 \quad 776.0 \quad 891.0 \quad 994.0 \quad 1085.0 \quad 2 / 1$
$79.0: 115.0206 .0309 .0424 .0 \quad 503.0 \quad 618.0 \quad 697.0812 .0 \quad 915.01006 .0 \quad 1121.0 \quad 2 / 1$
$194.0: 91.0 \quad 194.0 \quad 309.0 \quad 388.0 \quad 503.0 \quad 582.0 \quad 697.0 \quad 800.0 \quad 891.0 \quad 1006.0 \quad 1085.0 \quad 2 / 1$
$285.0: 103.0218 .0 \quad 297.0412 .0491 .0 \quad 606.0 \quad 709.0 \quad 800.0 \quad 915.0 \quad 994.0 \quad 1109.0 \quad 2 / 1$
$388.0: 115.0 \quad 194.0 \quad 309.0 \quad 388.0 \quad 503.0 \quad 606.0 \quad 697.0 \quad 812.0 \quad 891.0 \quad 1006.0 \quad 1097.0 \quad 2 / 1$
$503.0: 79.0 \quad 194.0 \quad 273.0 \quad 388.0 \quad 491.0 \quad 582.0 \quad 697.0 \quad 776.0 \quad 891.0 \quad 982.0 \quad 1085.0 \quad 2 / 1$
$582.0: 115.0194 .0 \quad 309.0 \quad 412.0 \quad 503.0 \quad 618.0 \quad 697.0 \quad 812.0 \quad 903.0 \quad 1006.01121 .0 \quad 2 / 1$
$697.0: 79.0 \quad 194.0 \quad 297.0 \quad 388.0 \quad 503.0 \quad 582.0 \quad 697.0 \quad 788.0 \quad 891.0 \quad 1006.0 \quad 1085.0 \quad 2 / 1$
$776.0: 115.0218 .0 \quad 309.0 \quad 424.0 \quad 503.0 \quad 618.0 \quad 709.0 \quad 812.0 \quad 927.01006 .0 \quad 1121.0 \quad 2 / 1$
$891.0: 103.0 \quad 194.0 \quad 309.0 \quad 388.0 \quad 503.0 \quad 594.0 \quad 697.0 \quad 812.0 \quad 891.0 \quad 1006.0 \quad 1085.0 \quad 2 / 1$
$994.0: 91.0 \quad 206.0285 .0400 .0491 .0 \quad 594.0 \quad 709.0 \quad 788.0 \quad 903.0 \quad 982.0 \quad 1097.0 \quad 2 / 1$
1085.0: 115.0 194.0 309.0 400.0 $503.0 \quad 618.0 \quad 697.0812 .0891 .01006 .01109 .0 \quad 2 / 1$
$2 / 1$

