Interval Matrix for MET-24, 1/1 = (2/1, 703.711, 57.422) Horizontal = distance on chain of fifths (-11 to 11) Vertical = spacing generators (-1 to 1) Showing the main interval families and transition zones | 1 71 |
1, 1)
16.6
6/189 | (-10, 1) | timal fam | ily | I |----------------------------|--|--|--|--|---|---|--|---|--|--|---|--|--|---|---|--|---|---|--|--|--|---|---| | | 0.6
n=1 | 220.3
143/126
+1.2
n=2 | 924.0
169/99
-1.8
n=3 | (-8, 1)
427.7
169/132
-0.05
n=4 | (-7, 1)
1131.4
52/27
-3.2
n=5 | (-6, 1)
635.2
13/9
-1.5
n=6 | cent
(-5, 1)
138.9
13/12
+0.3
n=7 | ral Zalza:
(-4, 1)
842.6
13/8
+2.1
n=8 | lian fami
(-3, 1)
346.3
11/9
-1.1
n=9 | ly
(-2, 1)
1050.0
11/6
+0.6
n=10 |
(-1, 1)
553.7
11/8
+2.4
n=11 | | (1, 1)
761.1
14/9
-3.8
n=11 | septima
(2, 1)
264.8
7/6
-2.0
n=10 | 1 family
(3, 1)
968.6
7/4
-0.3
n=9 | (2-3-7)
(4, 1)
472.3
21/16
+1.5
n=8 | (5, 1)
1176.0
63/32
+3.2
n=7 | - -
(6, 1)
679.7
77/52
+0.1
n=6 | pental f
(7, 1)
183.4
10/9
+1.0
n=5 | amily (2-
(8, 1)
887.1
5/3
+2.8
n=4 | -3-5) - .
(9, 1)
390.8
5/4
+4.5
n=3 | - 2-3
(10, 1)
1094.5
32/17
-0.5
n=2 | -17-
(11, 1)
598.2
24/17
+1.2
n=1 | | 0 65
338
+0 |
1, 0)
59.2
8/231
0.2
n=2 | large/
(-10, 0)
162.9
11/10
-2.1
n=4 | small Zal
(-9, 0)
866.6
104/63
-1.2
n=6 | zalian fam
(-8, 0)
370.3
26/21
+0.6
n=8 | mily
(-7, 0)
1074.0
13/7
-2.3
n=10 |
(-6, 0)
577.7
88/63
+0.9
n=12 | (-5. 0)
81.4
22/21
+0.9
n=14 | (-4, 0)
785.2
11/7
+2.7
n=16 | (-3, 0)
288.9
13/11
-0.3
n=18 | (-2, 0)
992.6
16/9
-3.5
n=20 | regula
(-1, 0)
496.3
4/3
-1.8
n=22 | r diaton
(0, 0)
0
1/1
just
n=24 | ic famil
(1, 0)
703.7
3/2
+1.8
n=22 | y
(2, 0)
207.4
9/8
+3.5
n=20 | (3, 0)
911.1
22/13
+0.3
n=18 | (4, 0)
414.8
14/11
-2.7
n=16 | (5, 0)
1118.6
21/11
-0.9
n=14 |
(6, 0)
622.3
63/44
+0.8
n=12 | larg
(7, 0)
126.0
14/13
-2.3
n=10 | e/small 2
(8, 0)
829.7
21/13
-0.6
n=8 | Calzaliar
(9, 0)
333.4
63/52
+1.2
n=6 | family
(10, 0)
1037.1
20/11
+2.1
n=4 |
(11, 0)
540.8
231/169
-0.2
n=2 | | (-11
-1 60
17
-1. | 1, -1)
01.8
7/12 | 17- -
(-10, -1)
105.5
17/16
+1.5
n=2 | | | | | | sepi
(-4, -1)
727.7
32/21
-1.5
n=8 | | ily (2-3-
(-2, -1)
935.2
12/7
+2.0
n=10 | | | (1, -1) | | | (4, -1) | Eamily
(5, -1)
1061.1
24/13
-0.3
n=7 | | | (8, -1)
772.3 | (9, -1)
276.0 | |
(11, -1)
483.4
189/143
+0.6
n=1 | The regular diatonic family consists of intervals within a single chain of fifths ranging from the diminished fifth (-6, 0) at 577.7 cents to the augmented fourth (6, 0) at 622.3 cents. As Jacobus showed in the _Speculum musicae_ or "Mirror of Music" around 1325-1330, there are 14 such intervals from the unison to octave inclusive. The large/small Zalzalian family consists of middle intervals. and is named for the 'oudist Mansur Zalzal in 8th-century Baghdad, credited with adding to the instrument a middle third fret. These are in Western terms the augmented or diminished intervals. from (-11, 0) to (-7, 0) for the large Zalzalian intervals; and (7, 0) to (11, 0) for the small Zalzalian intervals. The central Zalzalian family (see below) supplements these large and small sizes with "medium-small" and "medium-large" ones. The septimal family (primes 2-3-7) has smaller intervals (e.g. 14/9, 7/6, 7/4) approximated in the range of around (0, 1) to (5, 1); and larger intervals (e.g. 8/7, 12/7, 9/7) in the range from around (-5, -1) to (0, -1). The central Zalzalian family has smaller intervals (e.g. 13/12, 13/8, 11/9, 11/6) approximated in the range from around (-5, 1) to (-1, 1); and larger intervals (e.g. 12/11, 18/11, 16/13, 24/13) in the range from around (1, -1) to (5, -1). The periseptimal family approximates intervals in the "suburbs" of the septimal regions, with smaller intervals in the range of around (7, -1) to (11, -1); and larger intervals in the range from around (-11, 1) to (-7, 1). The pental family (primes 2-3-5) has smaller intervals (e.g. 8/5-6/5-9/5) in the range of around (-9, -1) to (-7, -1); and larger intervals in the range from around (7, 1) to (9, 1). A caution is in order that these intervals are rather remote and sparse, and also do not support music conceived in a meantone framework. The far corners of the matrix also include approximations of 17/16 and 17/12 at (-10, -1) and (-11, -1); and of 32/17 and 24/17 at (10, 1) and (11, 1). These families have "fuzzy" boundaries, with intervals in the fuzzy transition zones having a kind of dual citizenship: thus, for example, (0, 1) can represent either 28/27 (septimal family, small semitone or thirdtone); or 33/32 (central Zalzalian family, e.g. 4/3 vs. 11/8). Likewise, 27/26 (7, -1) could be central Zalzalian (e.g. 13/9 vs. 3/2) or periseptimal. ``` ! met24-canonical.scl Smoothed MET-24 in 2048-EDO, generators (2/1, 703.711c, 57.422c) 24 125.97656 183.39844 207.42188 264.84375 288.86719 346.28906 414 84375 472.26563 496.28906 553.71094 622.26563 679.68750 703.71094 761 13281 829.68750 887.10938 911.13281 968.55469 992.57812 1050.00000 1118.55469 ``` 1175.97656